1. If 3t - 7 = 5t, then 6t =

$$3t - 7 = 5t$$

-3t -3t

$$-\frac{42}{2} = 6t$$
 $|-2| = 6t$

2. The variables x and y are directly proportional, and y = 2 when x = 3. What is the value of y when x = 9?

$$\frac{2}{3}$$
 $\frac{4}{9}$

$$\frac{18}{3} = \frac{34}{3}$$

3. In the xy-plane above, point C has coordinates (6, 9). Which of the following is an equation of the line that contains points O and C?

A.
$$y = x - 3$$

B.
$$y = x + 3$$

$$C. \quad y = \frac{2}{3}x$$

$$D. \quad y = \frac{3}{2}x$$

Slope =
$$\frac{9-0}{6-0} = \frac{9}{6} = \frac{3}{2}$$

4. There are 3x-2 trees planted in each row of a rectangular parcel of land. If there are a total of 24x-16 trees planted in the parcel, how many rows of trees are there in the parcel?

A.
$$21x - 18$$

B.
$$21x-14$$

5. A group of 18 people ordered soup and sandwiches for lunch. Each person in the group had either one soup or one sandwich. The sandwiches cost \$7.75 each and the soups cost \$4.50 each. If the total cost of all 18 lunches was \$113.50, how many sandwiches were ordered?

$$X = 5$$
 and with $x = 10$ $19 - x = 5$ and $x = 10$ $19 - x = 5$ and $x = 113.50$ $10 - 10$ 10

6. Which of the following equations has both 1 and -3 as solutions?

A.
$$x^2 - 2x - 3 = 0$$

B.
$$x^2 + 2x - 3 = 0$$

C.
$$x^2 - 4x + 3 = 0$$

D.
$$x^2 + 4x + 3 = 0$$

$$\begin{array}{ccc}
X = 1 & X = -3 \\
(X - 1) & (X - (-3)) \\
(X - 1) & (X + 3) \\
(X - 1) & (X + 3) \\
X^2 - X + 3X - 3 \\
\hline
\\
& X^2 + 2X - 3
\end{array}$$

7. In the xy-plane, what is the y-intercept of the graph of the equation y = 2(x+3)(x-4)?

$$y - intercept \Rightarrow x = 0$$
 $y = 2(0+3)(0-4)$
 $y = 2(3)(-4)$

8.
$$x^4 - 1 =$$

A.
$$(x+1)(x-1)(x^2+1)$$

B.
$$(x+1)^2(x-1)^2$$

C.
$$(x+1)^3(x-1)^1$$

D.
$$(x-1)^4$$

Difference of 2 perfect
squares

$$x^{4}-1$$

 $(x^{2}-1)(x^{2}+1)$
 $(x-1)(x+1)(x^{2}+1)$

9.
$$(3x^2y^3)^3 =$$

A.
$$3x^5y^6$$

B.
$$9x^6y^9$$

C.
$$27x^5y^6$$

D.
$$27x^6y^9$$

10. If
$$\sqrt{5-x} = 4$$
, then $x = 4$

$$\sqrt{5-x} = 4$$
 $(\sqrt{5-x})^2 = 4^2$
 $5-x = 16$

$$-5 - X = 16$$

 $-5 - X = 11$
 $X = -11$

11. If
$$\frac{x-1}{x} = 20$$
, then $x =$

C.
$$-\frac{1}{19}$$

D.
$$\frac{1}{21}$$

$$\frac{X-1}{X}=20$$

$$(x) \frac{x}{x-1} = 30(x)$$

$$X-1 = 90$$

$$\frac{-1}{19} = \frac{19 \text{ }\%}{19}$$

$$-\frac{1}{19} = X$$

- 12. A ball was kicked into the air from a balcony 20 feet above the ground, and the ball's height above the ground, in feet, t seconds after the ball wasw kicked was $h(t) = 20 16t^2 + 32t$. What was the maximum height, in feet, of the ball above the ground after it was kicked?
 - A. 32
 - B. 34
 - C. 36
 - D. 40

* mart

Max occurs at the vertex

Vertex formula is

$$\chi = -\frac{b}{2a} \quad y = \int \left(-\frac{b}{2a}\right)$$

in ax2 +bx + C

In this equation $a = -16 \quad b = 3a$

$$S_0 \quad X = \frac{-32}{3(-16)} = 1$$

Plugin to find $f(1) \Rightarrow -16(1)^2 +32(1)+20$ = -16 + 32 + 20= 36

36 is the max ht.

13. The yard behind the Cindy's house is rectangular in shape and has a perimeter of 72 feet. If the length ℓ of the yard is 18 feet longer than the width w of the yard, what is the area of the yard, in square feet?

P= 72

A. 36B. 144

C. 243

D. 486

$$3\omega + a(\omega + 19) = 72$$

 $2\omega + a\omega + 36 = 72$
 $4\omega + 36 = 72$
 $-36 - 36$
 $4\omega = 36$
 $4\omega = 9$
 $\omega = 9$
 $\omega + 19 = a7$
 $A = a7 * 9 = a43$

City	High Temperature
A	£°F
В	87°F
C	81°F
D	62°F
E	93°F

- 14. The table above shows the high temperature last Thursday for five cities, A through E. If the median of the Thursday high temperatures for these cities was $81^{\circ}F$, which of the following could NOT have been the high temperature last Thursday for City A?
 - A. 85°F
 - B. 75°F
 - C. 65°F
 - D. 55°F

15. There are 20 children in the cast of a class play, and 8 of the children are boys. Of the boys, 4 have a speaking part in the play, and of the girls, 8 do <u>not</u> have a speaking part in the play. If a child from the cast of the play is chosen at random, what is the probability that the child has a speaking part?

- B. $\frac{1}{2}$
- C. $\frac{3}{5}$
- D. $\frac{3}{4}$

Of 20 in cust \rightarrow 8 are boys So 12 are girls

4 boys have speaking part 8 girls do not have speaking part Therefore H +H = 8 speaking parts

Probability of vandom child having

Speaking part = 8 or 2 or 2