Maximizing Profits in a Business

By Larry Garcia
McLennan Community College
MATH 241487
Gail Illich, M.S. Faculty Sponsor

The Scenario

Let's say someone starts a business selling calculators. They notice that when they sell them for $\$ 40$ each, they sell 1200 of them.

Price, p	$\$ 40$	$\$ 45$	$\$ 50$	$\$ 55$
Quantity, q	1200	1150	1100	1050

They also note that when they price them at \$45 each, they only sell 1150.

Each $\$ 5$ increase in price leads to a decrease of 50 units.

They would like to know at what quantity and price would they make the most profit.

How

In economics, the profit a business entity makes is represented by the function
$>P(x)=r(x)-c(x)$
$r(x)=$ the revenue from selling x items
$c(x)=$ the cost of producing x items If $r(x)$ and $c(x)$ are differentiable for x in some interval of production possibilities, and if $P(x)=r(x)-c(x)$ has a maximum value there, then it occurs at a critical point of $P(x)$

If it occurs at a critical point, then
$P^{\prime}(x)=r^{\prime}(x)-c^{\prime}(x)$ equals 0 and we see that
$>r^{\prime}(\mathrm{x})=\mathrm{c}^{\prime}(\mathrm{x})$
In economics, $\mathrm{r}^{\prime}(\mathrm{x})=\mathrm{c}^{\prime}(\mathrm{x})$ means that
At a production level yielding maximum profits, marginal revenue equals marginal cost

Calculating Revenue

From this we can find p

Revenue $=$ pq
We can find a slope for this relationship using two points

$$
\begin{gathered}
\mathrm{m}=\frac{1150-1200}{45-40}=-10 \\
y-y_{1}=m\left(x-x_{1}\right) \\
\mathrm{q}-1200=-10(p-40) \\
q=1600-10 p
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{q}=1600-10 p \\
\frac{-10 p}{-10}=\frac{q-1600}{-10} \\
\mathrm{p}=\frac{-1}{10} q+160
\end{gathered}
$$

Revenue in terms of items is $p(q) \times q=$

$$
\begin{aligned}
& r(q)=\left(\frac{-1}{10} q+160\right) q \\
& r(q)=160 q-\frac{1}{10} q^{2}
\end{aligned}
$$

Finding cost, MR, \& MC

To find cost,
Let's say that one calculator costs $\$ 30$ to manufacture, plus $\$ 2000$ a year in fixed costs so

$$
\begin{aligned}
& c(q)=2000+30 q \\
& P(q)=r(q)-c(q) \\
& P(q)=\left(160 q-\frac{1}{10} q^{2}\right)-(2000+30 q) \\
& \quad P(q)=-\frac{1}{10} q^{2}+130 q-2000
\end{aligned}
$$

We can take the derivative of revenue and cost for critical points of the profit function

$$
\begin{gathered}
r(q)=160 q-\frac{1}{10} q^{2} \\
r^{\prime}(q)=160-\frac{2}{10} q \\
r^{\prime}(q)=160-\frac{1}{5} q=M R
\end{gathered}
$$

$$
\begin{gathered}
c(q)=2000+30 q \\
c^{\prime}(q)=30=\mathrm{MC}
\end{gathered}
$$

Finding a Profit Maximizing Quantity

All we must do next is set $M R=M C$

$$
\begin{gathered}
160-\frac{1}{5} q=30 \\
-\frac{1}{5} q=-130 \\
q=\frac{-130}{-\frac{1}{5}} \\
q=650
\end{gathered}
$$

This means the profit function has a critical point at 650

The second derivative test lets us know if the critical point is a max or min, depending on the negativity or positivity of the second derivative.

$$
\begin{gathered}
P(q)=-\frac{1}{10} q^{2}+130 q-2000 \\
P^{\prime}(q)=-\frac{2}{10} q+130 \\
P^{\prime \prime}(q)=-\frac{1}{5}
\end{gathered}
$$

The function has a maximum value there

Maximized Profits

If we plug in 650 into our equation of $P(q)=r(x)-c(x)$ we can see how much profit the business would make

$$
\begin{gathered}
P(q)=\left(160(650)-\frac{1}{10}(650)^{2}\right)-(2000+30(650)) \\
P(q)=(61,750)-(21,500) \\
P(q)=40,250
\end{gathered}
$$

At a profit-maximizing quantity of 650 units, the business earns $\$ 40,250$.

If we plug in 651 units into our equation, we get a lower profit.

$$
\begin{gathered}
P(q)=\left(160(651)-\frac{1}{10}(651)^{2}\right)-(2000+30(651)) \\
P(q)=(61,779.9)-(21,530) \\
P(q)=40,249.9
\end{gathered}
$$

Alternative Way to Finding Max Profit

Find vertex of entire $\mathrm{P}(\mathrm{q})$ function
Find the derivative and equal it to zero to find this critical point

$$
\begin{gathered}
P(q)=-\frac{1}{10} q^{2}+130 q-2000 \\
P^{\prime}(q)=-\frac{2}{10} q+130 \\
P^{\prime}(q)=-\frac{2}{10} q+130=0 \\
-\frac{2}{10} q=-130 \\
-\frac{1}{5} q=-130
\end{gathered}
$$

$$
\begin{gathered}
-\frac{1}{5} q=-130 \\
q=-130 *-5 \\
q=650
\end{gathered}
$$

Plugging that back into the Profit function gives us the point of maxed profits:

$$
\begin{gathered}
P(q)=-\frac{1}{10}(650)^{2}+130(650)-2000 \\
P(q)=-\frac{1}{10}(42250)+84500-2000 \\
P(q)=-42250+82500=40,250
\end{gathered}
$$

$(650,40250)$

$$
M R=M C
$$

Profit Maximizing Quantity \& Profit

References

- Business calculus. (n.d.). Retrieved March 11, 2021, from http://www2.gcc.edu/dept/math/faculty/BancroftED/buscalc/chapter2/section2-9.php
- Graphing calculator. (n.d.). Retrieved March 11, 2021, from https://www.desmos.com/calculator
- Hass, J., Heil, C., Weir, M. D., \& Thomas, G. B. (2018). Thomas' calculus: Early transcendentals (Fourteenth ed.). Boston: Pearson.

